Superlattice Patterns in the Complex Ginzburg–Landau Equation with Multiresonant Forcing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlattice Patterns in the Complex Ginzburg-Landau Equation with Multiresonant Forcing

Motivated by the rich variety of complex patterns observed on the surface of fluid layers that are vibrated at multiple frequencies, we investigate the effect of such resonant forcing on systems undergoing a Hopf bifurcation to spatially homogeneous oscillations. We use an extension of the complex Ginzburg-Landau equation that systematically captures weak forcing functions with a spectrum consi...

متن کامل

Superlattice Patterns in Surface Waves

We report novel superlattice wave patterns at the interface of a fluid layer driven vertically. These patterns are described most naturally in terms of two interacting hexagonal sublattices. Two frequency forcing at very large aspect ratio is utilized in this work. A superlattice pattern ("superlattice-I") consisting of two hexagonal lattices oriented at a relative angle of 22o is obtained with...

متن کامل

Hill's Equation with Random Forcing Terms

Motivated by a class of orbit problems in astrophysics, this paper considers solutions to Hill’s equation with forcing strength parameters that vary from cycle to cycle. The results are generalized to include period variations from cycle to cycle. The development of the solutions to the differential equation is governed by a discrete map. For the general case of Hill’s equation in the unstable ...

متن کامل

Spectral stability for the wave equation with periodic forcing

We consider the spectral stability problem for Floquet-type systems such as the wave equation vττ = γ2vxx − ψv with periodic forcing ψ. Our approach is based on a comparison with finite-dimensional approximations. Specific results are obtained for a system where the forcing is due to a coupling between the wave equation and a time-period solution of a nonlinear beam equation. We prove (spectral...

متن کامل

Energy Growth in Schrödinger’s Equation with Markovian Forcing

Abstract. Schrödinger’s equation is considered on a one-dimensional torus with time dependent potential v(θ, t) = λV (θ)X(t) where V (θ) is an even trigonometric polynomial and X(t) is a stationary Markov process. It is shown that when the coupling constant λ is sufficiently small, the average kinetic energy grows as the square-root of time. More generally, the Hs norm of the wave function is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Applied Dynamical Systems

سال: 2009

ISSN: 1536-0040

DOI: 10.1137/080717419